3.2041 \(\int \frac {1}{(a+\frac {b}{x^3})^{3/2} x^7} \, dx\)

Optimal. Leaf size=38 \[ -\frac {2 a}{3 b^2 \sqrt {a+\frac {b}{x^3}}}-\frac {2 \sqrt {a+\frac {b}{x^3}}}{3 b^2} \]

[Out]

-2/3*a/b^2/(a+b/x^3)^(1/2)-2/3*(a+b/x^3)^(1/2)/b^2

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 38, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {266, 43} \[ -\frac {2 a}{3 b^2 \sqrt {a+\frac {b}{x^3}}}-\frac {2 \sqrt {a+\frac {b}{x^3}}}{3 b^2} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + b/x^3)^(3/2)*x^7),x]

[Out]

(-2*a)/(3*b^2*Sqrt[a + b/x^3]) - (2*Sqrt[a + b/x^3])/(3*b^2)

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {1}{\left (a+\frac {b}{x^3}\right )^{3/2} x^7} \, dx &=-\left (\frac {1}{3} \operatorname {Subst}\left (\int \frac {x}{(a+b x)^{3/2}} \, dx,x,\frac {1}{x^3}\right )\right )\\ &=-\left (\frac {1}{3} \operatorname {Subst}\left (\int \left (-\frac {a}{b (a+b x)^{3/2}}+\frac {1}{b \sqrt {a+b x}}\right ) \, dx,x,\frac {1}{x^3}\right )\right )\\ &=-\frac {2 a}{3 b^2 \sqrt {a+\frac {b}{x^3}}}-\frac {2 \sqrt {a+\frac {b}{x^3}}}{3 b^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 29, normalized size = 0.76 \[ -\frac {2 \left (2 a x^3+b\right )}{3 b^2 x^3 \sqrt {a+\frac {b}{x^3}}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + b/x^3)^(3/2)*x^7),x]

[Out]

(-2*(b + 2*a*x^3))/(3*b^2*Sqrt[a + b/x^3]*x^3)

________________________________________________________________________________________

fricas [A]  time = 0.96, size = 37, normalized size = 0.97 \[ -\frac {2 \, {\left (2 \, a x^{3} + b\right )} \sqrt {\frac {a x^{3} + b}{x^{3}}}}{3 \, {\left (a b^{2} x^{3} + b^{3}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x^3)^(3/2)/x^7,x, algorithm="fricas")

[Out]

-2/3*(2*a*x^3 + b)*sqrt((a*x^3 + b)/x^3)/(a*b^2*x^3 + b^3)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (a + \frac {b}{x^{3}}\right )}^{\frac {3}{2}} x^{7}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x^3)^(3/2)/x^7,x, algorithm="giac")

[Out]

integrate(1/((a + b/x^3)^(3/2)*x^7), x)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 37, normalized size = 0.97 \[ -\frac {2 \left (a \,x^{3}+b \right ) \left (2 a \,x^{3}+b \right )}{3 \left (\frac {a \,x^{3}+b}{x^{3}}\right )^{\frac {3}{2}} b^{2} x^{6}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b/x^3)^(3/2)/x^7,x)

[Out]

-2/3*(a*x^3+b)*(2*a*x^3+b)/x^6/b^2/((a*x^3+b)/x^3)^(3/2)

________________________________________________________________________________________

maxima [A]  time = 0.87, size = 30, normalized size = 0.79 \[ -\frac {2 \, \sqrt {a + \frac {b}{x^{3}}}}{3 \, b^{2}} - \frac {2 \, a}{3 \, \sqrt {a + \frac {b}{x^{3}}} b^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x^3)^(3/2)/x^7,x, algorithm="maxima")

[Out]

-2/3*sqrt(a + b/x^3)/b^2 - 2/3*a/(sqrt(a + b/x^3)*b^2)

________________________________________________________________________________________

mupad [B]  time = 1.25, size = 31, normalized size = 0.82 \[ -\frac {2\,\sqrt {a+\frac {b}{x^3}}\,\left (2\,a\,x^3+b\right )}{3\,b^2\,\left (a\,x^3+b\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^7*(a + b/x^3)^(3/2)),x)

[Out]

-(2*(a + b/x^3)^(1/2)*(b + 2*a*x^3))/(3*b^2*(b + a*x^3))

________________________________________________________________________________________

sympy [A]  time = 6.15, size = 51, normalized size = 1.34 \[ \begin {cases} - \frac {4 a}{3 b^{2} \sqrt {a + \frac {b}{x^{3}}}} - \frac {2}{3 b x^{3} \sqrt {a + \frac {b}{x^{3}}}} & \text {for}\: b \neq 0 \\- \frac {1}{6 a^{\frac {3}{2}} x^{6}} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x**3)**(3/2)/x**7,x)

[Out]

Piecewise((-4*a/(3*b**2*sqrt(a + b/x**3)) - 2/(3*b*x**3*sqrt(a + b/x**3)), Ne(b, 0)), (-1/(6*a**(3/2)*x**6), T
rue))

________________________________________________________________________________________